Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
Площадь полной поверхности пирамиды (обозначим её МАВСD)
состоит из суммы площадей всех граней.
Противоположные боковые грани равны по трём сторонам.
Так как МО перпендикулярна плоскости основания, а ВD⊥АВ и CD, то ОВ – проекция наклонной МВ.
По т.о 3-х перпендикулярах МВ⊥АВ.
Диагонали параллелограмма точкой пересечения делятся пополам ⇒. ОВ=1,5.
Высота пирамиды МО⊥ОВ.
Из ∆ МОВ по т.Пифагора
МВ=√(МО²+ОВ²)=√(4+2,25)=2,5
Ѕ(АМВ)=МВ•АВ:2=2,5•4:2=5 м²
Ѕ(MCD)=S(AMB) ⇒Ѕ(MCD)+S(AMB)=10 м²
Найдём высоту второй пары боковых граней.
а) Высота DH прямоугольного ∆ BDH (в основании) равна произведению катетов, делённому на гипотенузу.
DH=DB•DC:BC=3•4:5=2,4 м
Проведем ОК⊥ВС
ВO=ОD ⇒ ОК - средняя линия ∆ВDH и равна половине DH.
ОК=1,2 м
ОК - проекция наклонной МК. ⇒ По т.ТПП отрезок МК⊥ВС и является высотой ∆ ВМС
б) Из прямоугольного ∆ МОК по т.Пифагора
МК=√(MO²+OK²)=√(4+1,44)=√5,44
√5,44=√(544/100)=(2√34):10=0,2√34
S(MBC)=BC•MK:2=0,5•5•0,2√34=0,5√34 м²
S(AMD)=S(MBC)⇒ S(AMD)+S(MBC)=2•0,5√34=√34 м²
S(ABCD)=DB•AB=3•4=12 м²
Площадь полной поверхности MABCD:
2•S(AMB)+S(ABCD)+2•S(MBC=10+12+√34=(22+√34)м²
2 и 4
Объяснение:
во 2 ошибка- Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.4- такого нет