М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
тэ10л
тэ10л
28.01.2021 11:20 •  Геометрия

Дана трапеция A B C D с основанием A D , в которой выполнены равенства = A B = B C , = A C = C D , += B C + C D = A D . Найдите величину наибольшего угла трапеции A B C D .

👇
Открыть все ответы
Ответ:
JaikHit533
JaikHit533
28.01.2021

ответ: 432 см²

Объяснение:

Обозначим трапецию АВСD; BC||AD.  BC=b=11 см, AD=a=25 см

Опустим из вершины В высоту ВН.

Высота равнобедренной трапеции, опущенная из вершины тупого угла, делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. ⇒

АН=(25-11):2=7 см

DH=(25+11):2=18 см

ВС||AD, диагональ трапеции ВD- секущая. ⇒ ∠СВD=∠BDA (по свойству накрестлежащих углов)..  

ВD - биссектриса угла В, поэтому и ∠АВD=∠BDA. Углы ∆ АВD при основании BD равны, ⇒ ∆ АВD равнобедренный, АВ=АD=25 см.  

Из ∆ АВН по т.Пифагора ВН=24 ( стороны ∆ АВН из Пифагоровых троек).

Площадь трапеции равна произведению полусуммы оснований на высоту. Полусумма оснований DH=18 см

Ѕ(ABCD)=HD•BH=18•24=432 см²


Найдите площадь равнобокой трапеции , основания которой равны 11 см и 25 см, а диагонали являются би
4,6(21 оценок)
Ответ:
danila110420051
danila110420051
28.01.2021
Билет № 2
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23

Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60

Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20

\sqrt[n]{x}
4,5(97 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ