1) Для треугольника есть вот такая формула нахождения площади - половина стороны умноженная на высоту, к ней проведённую. При этом неважно, какую сторону взять - площадь должна получатся одна и та же. Это означает, что если у нас есть две одинаковые высоты, то что бы площади получались одни и те же, каждая из этих высот должна умножатся на одно и то же число - значит, раз есть две одинаковые высоты, то есть и две одинаковые стороны - отсюда треугольник равнобедренный.
2) BH – медиана треугольника , ΔMBE – равнобедренный, АМ = СЕ - вот эти утверждения верные.
1) Т.к сумма углов в треугольнике = 180 градусов, => угол B = 180-(35+48)=97
2) Угол CAB смежный с внешним углом А => угол CAB=180-110=70, угол C=180-(40+70)=70.
3) Угол B смежный с углом CBA => угол CBA=180-120=60, угол ВСА по той же причине =180-110=70. Угол A=180-(60+70)=50.
4) Не могу разглядеть цифру, но угол В=90-угол А (т.к треугольник прямоугольный).
5) Угол В смежный с СВА => СВА=180-130=50, угол А=90-50=40.
6) Углы А и ВАС вертикальные => они равны. Угол В=180-(40+105)=35
7) Углы при основании в равнобедренном треугольнике равны, => А=С=70. В=180-(70+70)=40.
8) А=С=180-50/2=65
9) С и ВСА смежные => ВСА=180-125=55. А=С=55. В=180-(55+55)=70.
Доказательство в объяснении и приложении.
Объяснение:
Если прямые I1 и I2 - касательные к соответствующим окружностям, то ∠ВАС равен половине дуги АС (большой окружности) по свойству угла между хордой и касательной. ∠ADC равен половине дуги АС (большой окружности) как вписанный, опирающийся на эту дугу. =>
∠АDC = ∠ВАC.
∠ACD равен половине дуги АС (малой окружности) по свойству угла между хордой и касательной. ∠AВC равен половине дуги АС (малой окружности) как вписанный, опирающийся на эту дугу. =>
∠АСD = ∠ABC.
В треугольнике ACD ∠CАD = 180 - ∠АСD - ∠ADC.
В треугольнике AВC ∠АСВ= 180 - ∠АBC - ∠BAC. =>
∠CАD = ∠АСВ. Это внутренние накрест лежащие углы про прямыхI3 и I4 и секущей АС => прямые I3 и I4 - параллельные, что и требовалось доказать.