Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АВ и делящее его в отношении 1:3, и проходящей параллельно ребру ВС. Найдите площадь сечения.
Как мы знаем, в равнобедренном треугольнике боковые стороны равны.
Значит, у нас есть два случая, если боковая сторона равняется 6 или 8.
1) Если боковые стороны равны по 6 см. Значит, основание равно 8 см. Периметр равнобедренного треугольника равен произведение двух боковых сторон плюс основание треугольника. Найдем периметр треугольника в первом случае:
6 · 2 + 8 = 20 см.
2) Если боковые стороны равны по 8 см. Значит, основание равно 6 см.
Найдем периметр:
8 · 2 + 6 = 22 см.
ответ: Первый случай периметр равен 20 см; Второй случай периметр равен 22 см.
Свойство: Средняя линия треугольника соединяет середины двух сторон, параллельна третьей стороне и равна ее половине. EF - средняя линия. Значит АEFВ - трапеция, в которой CВ=2ЕF. Свойство: Если в трапецию вписана окружность, то сумма оснований трапеции равна сумме ее боковых сторон. Итак, ВС+EF=CE+FB. Но EF=(1/2)*ВС, а СЕ+FB=(1/2)*(АВ+АС). Значит (3/2)*ВС=(1/2)*(АВ+АС) или 3ВС=АВ+АС. АВ+АС+ВС=24 (дано). Тогда 4ВС=24, а ВС=6. Sabc=(1/2)*ВC*h=(1/2)*6*8=24.(так как h=2*d=8, поскольку EF - средняя линия и делит h пополам. Половина же высоты - это в нашем случае диаметр вписанной окружности). По Герону: Sabc=√[p(p-a)(p-b)(p-c). Или S²=12(12-a)(12-b)(12-6). То есть 24²=12*6*(12-a)(12-b) или 8=(12-a)(12-b). Но a+b+c=24, а с=6, значит a+b=18. тогда b=18-a. Подставляем это значение в выражение 2=(12-a)(12-b) и получаем: 8=(12-a)(а-6). Имеем квадратное уравнение: а²-18а+80=0, откуда а1=10, а2=8 и b1=8, b2=10.
В данной задаче может быть два случая:
Как мы знаем, в равнобедренном треугольнике боковые стороны равны.
Значит, у нас есть два случая, если боковая сторона равняется 6 или 8.
1) Если боковые стороны равны по 6 см. Значит, основание равно 8 см. Периметр равнобедренного треугольника равен произведение двух боковых сторон плюс основание треугольника. Найдем периметр треугольника в первом случае:
6 · 2 + 8 = 20 см.
2) Если боковые стороны равны по 8 см. Значит, основание равно 6 см.
Найдем периметр:
8 · 2 + 6 = 22 см.
ответ: Первый случай периметр равен 20 см; Второй случай периметр равен 22 см.