Два угла треугольника равны 45° и 120°, а сторона, лежащая против меньшего из них, равна 8. Найдите сторону треугольника, лежащую против большего из данных углов.
Объяснение:
Найдем третий угол , по т. о сумме углов треугольника
180°-120°-45°=15°.
Тогда углы в этом треугольники 120°, 45°, 15°.
Против угла 15° лежит сторона 8 ед ,
против угла 120° пусть лежит сторона х ед.
Тогда по т. синусов ,
Посчитаем синусы :sin15= sin(60-45)= sin60*cos45-sin45*cos60= ,
sin120= sin(90+30)=.
Тогда х= = 4√6(√3+1) .
Из точки А проведены две секущие АВ и АС, которые пересекают окружность в точках К и М так, что AB = 2 см, ВС = 4 см, AC = 5 см, AK = 1 см. Найдите МК.
Объяснение:
1)∠AKM =180°-∠BKM по т. о смежных углах ; ∠C=180°-∠BKM по свойству углов вписанного 4-х угольника ⇒ ∠AKM =∠C.
2) ΔAKM ~ΔACB по двум углам : ∠A_общий , ∠AKM =∠C.
Сходственные стороны в подобных треугольниках пропорциональны : , ⇒ MK=(1*4):5=0,8 (см)
============================
Свойство углов вписанного 4-х угольника
Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180°.
Объяснение:
наверное так , я не знаю но я так решаю