Большее основание равнобедренной трапеции в 2 раза больше меньшего основания. Расстояние от середины большего основания до вершины тупого угла равно меньшему основанию. Вычисли периметр трапеции, если длина меньшего основания равна 20см
Диагональ делит трапецию на два треугольника со средними линиями. В треугольнике средняя линия равна половине параллельной стороны. Задача 10. Больший из отрезков - половина от 10, т.е. 5. Задача 11.Меньший из отрезков - половина от 12, т.е. 6. Задача 12. Средняя линия в трапеции - половина суммы параллельных сторон. Периметр 40, сумма боковых 20, значит сумма параллельных - тоже 20. Средняя линия 10. В 13. проведи высоту через точку пересечения диагоналей и рассмотри получившиеся 4 равнобедренных прямоугольных треугольника. Получится сумма оснований в 2 раза больше высоты, т.е. 20. А средняя линия 10. В 14 проведи две высоты рассмотри два треугольника и прямоугольник. Верхнее основание получится 7, а нижнее 37. Сумма 44, средняя линия 22. В 15 такое же рассуждение. Верхнее основание получается 111, нижнее 143. (111+143)/2 =127 - средняя линия. Вроде все должно быть верно. Самое главное - путь к ответу.
Пострим трапецию ABCD и проведем среднюю линию MN и диагональ АС. Точку пересечения средней линии и диагонали обозначим О. Для начала найдем среднюю линию: она равна полусумме оснований, т.е. MN=7. Средняя линия делит не только стороны трапеции пополам, но и диагональ трапеции так же делит пополам. Следовательно, мы можем рассмотреть два подобных треугольника ACD и OCN (по стороне и двум прилежащим углам, или по трем сторонам). В подобных треугольниках соответственные углы равны, а соответственные стороны равнопропорциональны. Т.е. AC/OC=DC/NC=AD/ON 2\1=2\1=10\ON откуда ON=5. Т.к. длина средней линии 7 см, то второй отрезок будет равен 7-5=2. Следовательно больший из отрезков, на которые среднюю линию делит диагональ трапеции - равен 5.