М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LisenokHan
LisenokHan
16.03.2023 08:39 •  Геометрия

решить Сторона основания правильной треугольной призмы равна 9 см, а диагональ боковой грани 15 см. Найдите боковое ребро, площадь боковой и полной поверхности призмы.
2) Основание призмы – ромб с острым углом 60°. Боковое ребро призмы равно 10 см, а площадь боковой поверхности 240 〖см〗^2. Найдите сторону основания и площадь основания призмы.

👇
Открыть все ответы
Ответ:
Verozan2103
Verozan2103
16.03.2023

АВ = АС = 2√6 см, АН = 3√2 см.

Объяснение:

Условие: "Из точки А до плоскости альфа проведены наклонные АВ и АС, которые образуют со своими проекциями на данную плоскость углы по 30°. Найти данные наклонные и расстояние от точки А до плоскости альфа, если угол между ПРОЕКЦИЯМИ наклонных равен 90°, а расстояние между основаниями наклонных равно 6 см."

Решение.

Опустим перпендикуляр АН из точки А на плоскость альфа.

Треугольники АВН и АСН равны по катету и острому углу. Следовательно, наклонные АВ и АС равны, равны и их проекции. Треугольник  ВНС - прямоугольный, так как угол между проекциями ВН и СН равен 90° (дано). Так как проекции равны, треугольник ВНС равнобедренный. Пусть катеты равны х, тогда по  Пифагору:

2х² = 6²  =>  х = √6см.

Итак, ВН = СН = √6 см.

В прямоугольном треугольнике АВН катет АН лежит против угла В, равного 30° (дано). Тогда АВ = 2·ВН и по Пифагору:

АН² = (2ВН)² - ВН²  => АН = √(4·6 - 6) = 3√2 см.

ответ: АВ = АС = 2√6 см, АН = 3√2 см.


Із точки а до площини альфа проведено похилі ав і ас які утворюють зі своїми проекціями на дану площ
4,7(68 оценок)
Ответ:
Alinok99
Alinok99
16.03.2023

Объяснение:1. Измерение отрезков

Две геометрические фигуры (отрезки, углы,

треугольники и др.) считаются равными, если их

можно наложить друг на друга так, чтобы они совпали.

Отрезки равны, если равны их длины.

Если точка лежит на отрезке , то A B C

+ = .

1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?

(Есть разные возможности.)

B Если точка находится между точками и

A B C

3 5

, то это расстояние равно 3+5 = 8. Но возможен и

другой случай, когда находится вне отрезка .

Нарисовав картинку, убеждаемся, что в этом случае

B A C расстояние равно 5 − 3 = 2. C

3 2

2. На прямой выбраны четыре точки , , ,

, причём = 1, = 2, = 4. Чему может

быть равно ? Укажите все возможности.

B Сначала посмотрим, чему может быть равно

расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка

внутри или вне) | и получается либо 3, либо

1. Теперь мы получаем две задачи: в одной из них

= 3 и = 4, в другой | = 1, = 4.

Каждая имеет по два ответа, так что всего ответов

получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:

расстояние может равняться 1, 3, 5 или 7. C

3. На деревянной линейке отмечены три деле- 0 7 11

ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?

B Используя деления 7 и 11, легко отложить 4

сантиметра. Сделав это дважды, получим отрезок

в 8 сантиметров. Отложить 5 сантиметров немного

сложнее: умея откладывать 8 и 7, можно отложить

1 сантиметр. Сделав это 5 раз, получаем

4,4(31 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ