Основание прямой призмы - прямоугольный треугольник с гипотенузой 12см и катетом 5см. Найдите площадь боковой поверхности, если грань содержащая больший катет - квадрат.
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 ----------- Центр окружности лежит на АВ, следовательно, АD- диаметр. Проведем радиус ОС . Т.к. С - точка касания, ОС ⊥ АС. Треугольник АОС - прямоугольный. ОС=ОВ=ОD=r, АD:DB=1:2 ⇒ AD=DO=OB=r В прямоугольном треугольнике АСD гипотенуза AO=2 r=2 OC ⇒ sin∠OАС= OС:АО=1/2 ⇒ Угол ОАС=30º,⇒ угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ Больший угол АСВ треугольника АВС равен ∠АСВ=∠АСО+∠ВСО=90º+30º=120º
85+5√119см²
Объяснение:
Дано:
ABCA1B1C1- прямая призма.
∆А1В1С1- прямоугольный.
А1В1=5см
А1С1=12см.
Sбок=?
Решение.
По теореме Пифагора найдем второй катет ∆А1В1С1
С1В1²=А1С1²-А1В1²=12²-5²=144-25=119 см
С1В1=√119 см
√25>√119
5>√119 значит
АВА1В1- является квадрат.
А1В1=В1В=АВ=АА1=5см.
ВВ1=5см высота призмы.
Формула нахождения площади боковой поверхности призмы.
Sбок=Росн*h, где Росн- периметр основания, h=BB1 - высота.
Росн=А1В1+В1С1+А1С1=12+5+√119=
=17+√119 см периметр треугольника.
Sбок=(17+√119)*5=85+5√119 см² площадь боковой поверхности призмы.