Проводим перпендикуляры = радиусу в точки А и В, треугольник АКО и ВКО прямоугольные КО - бииссектриса угла А, углы АКО=ОКВ = 120/2=60, угол АОВ=углу ВОК=90-60=30 углы лежат напротив катетов АК и КВ , которые равны 1/2 гипотенузы КО = 16/2=8
проводим линию АВ, треугольник АКВ равунобедренный АК=ВК=8, КО - биссектриса, медиана, высота, точка Р - пересечение КО и АВ, треугольники АКР и ВКР прямоугольные углы КАР=углу КВР=90-60=30, и лежат напротив катета КР, который= 1/2 гипотенузы АК (КВ)= 8/2=4, Треугольник АКР, АР = корень (АК в квадрате - КР в квадрате) =
=корень (64-16)=4 х корень3 =РВ, АВ=АР+РВ=8 х корень3
1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6