§11. Подобие фигур → номер 8
1) Проведем биссектрису угла NQ.
2) Отметим на ней точку О, опустим перпендикуляры OF и ОЕ на стороны угла.
3) Построим окружность с центром в точке О и радиусом
ОЕ.
4) Проведем луч NA, который пересекает окружность в точке Т.
5) Проведем прямую АО1, так что АО1 || ТО. Тогда ΔNTO и ΔNAO1 подобны, так что
6) Построим окружность с центром в точке 01 и радиусом О1А1.
Докажем, что эта окружность искомая, то есть А01 = = 01М = 01Р, где 01Ми 01Р — перпендикуляры из точки 01 на стороны угла.
1) Пусть точка C - точка пересечения отрезков AB и MK.
Тогда по первому признаку равенства треугольников (две стороны и угол между ними) будут равными треугольники AKC и CBM.
А значит и углы тругольников AKС и СMB равны. Из этого следует, по теореме о параллельных прямых, так как накрест-лежащие углы (AKС и СMB) равны, то отрезки AK и MB параллельны.
2) См. рисунок.
Так как CH- биссектриса, то углы KCH и HCT равны между собой и равны половине угла KCP, т.е. 29°.
Так как CK и TH параллельны, то накрест-лежащие углы KCH и CHT равны, также 29°.
Угол CTH = 180 - HCT - CHT =180-29-29=122°.
Таким образом углы в треугольнике CHT: 29, 29, 122.