1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
В равнобедренном треугольнике MNK с основанием MK, равным 10 см , MN=NK=20 см. На стороне NK лежит точка A так, что AK : AN как 1 : 3. Найти AM. Сделаем рисунок. АК:КN=1:3 Пусть коэффициент этого отношения будет х. Так как NK=20=х+3х=4x, AK=20:4=5см Проведем АВ параллельно основанию МК и АС параллельно боковой стороне NM. Треугольники MNK и ABN подобны с коэффициентом подобия KN:AN=4:3 Cледовательно, МК:АВ=4:3 10:АВ=4:3 4АВ=30 АВ=7,5 см В параллелограмме АВМС противоположные стороны равны. ВМ=АК=АС=5 см МС=7,5 см Треугольник АСК - равнобедренный. Найдем по т. Пифагора его высоту АН. КС=МК-МС=10-7,5=2,5 см НК=1,25 см АН²= (АК²-НК²)=(5²-1,25²)=23,4375 Из прямоугольного треугольника НАМ найдем АМ по т.Пифагора: АМ=√(МН²+АН²)=√(7,5²+23,4375)=√100=10 см
а) (-2;0) - центр окружности, радиус окружности равен 3.
б) (0; 4) - центр окружности, радиус окружности равен
.
в) (5; -7) - центр окружности, радиус окружности равен 4.
Объяснение:
Уравнение окружности имеет вид: (x-a)²+(y-b)²=R². Здесь центр окружности (a; b) . R - радиус окружности.
а) (-2; 0) -центр окружности, R²=9. R²=3². R=3.
б) (0; 4) - центр окружности,
,
.
в) (5; -7) - центр окружности, R²=16,
, R=4.
Заметим, что по условию задачи радиус всегда должен быть положительным. То есть при извлечении корня выбираем только арифметический корень