ответ: АР=8
Объяснение (подробно):
ТР - биссектриса ⇒ ∠КТР=∠РТМ.
Т.к. около четырехугольника описана окружность, все углы, вершины которых лежат на ней, -вписанные. Вписанные углы, которые опираются на одну дугу, равны; равны и хорды, которые стягивают равные дуги.
Угол РМК опирается на дугу РК, и угол КТР опираются на дугу КР, следовательно они равны. Но им равен и угол РТМ , следовательно, равны хорды КР=РМ=16.
Примем АР=х. Тогда ТР=ТА+х=24+х
Рассмотрим ∆ ТКР и АКР. Они имеют по два равных угла, следовательно, подобны. Из их подобия следует отношение ТР:КР=КР:АР ⇒
(24+х):16=16:х
Из пропорции получаем 14х+х²=256 ⇒ х²+24х-256. Решив квадратное уравнение находим х₁=8; х₂=-32 ( не подходит).
АР=х=8.
1) 18см
2) 12см
3) 6см
4) 27см.
Найдите стороны четырехугольника.
Объяснение:
Пусть длина 1 стороны - х см.
Запишем % в десятичном виде:
50%=50/100=0,5
150%=150/100=1,5
1 сторона - х см
2 сторона - 2/3х
3 сторона - (2/3х)×0,5
4 сторона - 1,5х
Р (периметр) - 63 см
1)Составим уравнение:
х+2/3х+(2/3х)×0,5+1,5х=63
х+2/3х+(2/3)×(1/2)х+3/2х=63
х+2/3х+1/3х+3/2х=63 | ×6
6х+4х+2х+9х=63×6
21х=378
х=378:21
х=18 см первая сторона;
2) 18×2/3=12 (см) вторая сторона;
3) 12×0,5=6 (см) третья сторона;
4) 18×1,5=27 (см) четвертая чторона.
1 сторона 18 см
2 сторона 12 см
3 сторона 6 см
4 сторона 27 см.