Биссектрисы ВМ и СМ, пересекаясь с точкой М, принадлежащей стороне АD, образуют треугольники со стороной АD и боковыми сторонами. Образованные треугольники равнобедренные. Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD. Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.
Биссектрисы ВМ и СМ, пересекаясь с точкой М, принадлежащей стороне АD, образуют треугольники со стороной АD и боковыми сторонами. Образованные треугольники равнобедренные. Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD. Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.
ответ:Так,чтобы найти площадь треугольника АВС проведем диагональ из угла С к углу А
Видим 2 треугольника Sтрап=1/2(BC+AD)h
отсюда найдем высоту 35=2.5h, h=14,найдем площадь треугольника АСD
Sacd=1/2AD*H=1/2*4*14=28,чтобы найти площадь треугольника ABC Нужно из площади трапеции вычесть площадь треугольника ACD,значит Sтрап-Sacd=35-28=7