Стереометрия (от др.-греч. στερεός, «стереос» — «твёрдый, пространственный» и μετρέω — «измеряю») — это раздел геометрии, в котором изучаются свойства фигур в пространстве. Основными фигурами в пространстве являются точка, прямая и плоскость. В стереометрии появляется новый вид взаимного расположения прямых: скрещивающиеся прямые. Это одно из немногих существенных отличий стереометрии от планиметрии, так как во многих случаях задачи по стереометрии решаются путем рассмотрения различных плоскостей, в которых выполняются планиметрические законы. Не стоит путать этот раздел с планиметрией, поскольку в планиметрии изучаются свойства фигур на плоскости (свойства плоских фигур), а в стереометрии — свойства фигур в пространстве (свойства пространственных фигур).
периметры относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия...
S1 / S2 = 25 / 49
S1 = 25×S2 / 49
S2 ---большая площадь
S2 - S1 = 864
S2 - 25×S2 / 49 = 864
49×S2 - 25×S2 = 864×49
24×S2 = 24×36×49
S2 = 36*49 = 1764
S1 = 25*36*49 / 49 = 900
k = 2 : 3 коэффициент подобия
S₁ : S₂ = 2² : 3²
S₁ : (130 - S₂) = 4 : 9
По основному свойству пропорции, произведение крайних = произведению средних
9S₁ = 4 (130 - S₁)
13S₁ = 520
S₁ = 40 (cм²) - площадь меньшего многоугольника
S₂ = 130 - 40 = 90 (cм²) - площадь бОльшего многоугольника