Дан прямоугольный треугольник АВС (<90°). Постройте его образ при повороте вокруг центра С на 90° по часовой стрелке. Чему равен угол между АВ и А1В1, если АВ ➡️ А1В1
Пирамида правильная, значит в основании лежит правильный треугольник, а основание высоты пирамиды SO лежит в центре треугольника О. В правильном треугольнике высота его делится точкой О на отрезки в отношении 2:1, считая от вершины (по свойству медиан, а высота - это и медиана в правильном треугольнике). В прямоугольном треугольнике АSO АО/АS=Cos(<SAO). Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6. Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9. ответ: высота основания пирамиды равна 9.
P = 2x + y (x - боковые стороны, y - основание) y = 96, P = 196 - дано в условии, найдем x 2X=P-y x= (P-y)/2 x=50
итого: x = 50, y = 96 нам не хватает высоты, для нахождения площади. Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) по теореме Пифагора h = √(x^2 - (y/2)^2) h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h тогда: S=1/2*hy = 96*14/2 = 672. ответ: 672
В прямоугольном треугольнике АSO АО/АS=Cos(<SAO).
Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6.
Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9.
ответ: высота основания пирамиды равна 9.