В стихотворении Фета «В пору любви, мечты, свободы.» (1855) - в счастливую пору детства и юности поэт не знал «душевной непогоды», то есть воздействия зла на душу, не верил, «.что будто по душе иной Проходит злоба полосами, Как тень от тучи громовой».
Зло в человеке, как тень от громовой тучи, - этот фетовский образ выражает мысль о природе зла:
туча есть сам дух зла, а его тень - тень от тучи, падающая вниз, в человеческие души, есть проникшее в человека зло, которое полосами захватывает его внутренний мир.
В пору жизненных испытаний (так развивается мысль стихотворения) пришлось «отрезвиться» - увидеть зло, зло в себе самом (в соответствии с важнейшим требованием аскетики), увидеть ту самую тень от тучи в своей душе. И это есть опыт познания собственной природы, который, так или иначе формируется, когда человек ищет путь к души.
Всю глубину зла и его внутренней неодолимости оценить сразу невозможно, оно раскрывается постепенно:
«.В душе сокрыта, // Беда спала. Но знал ли я, // Как живуща, как ядовита // Эдема старая змея!». Зло предстает в образе библейского змия, который искушал Адама в Раю, и его «тяжкое крыло», его присутствие, «слышит» порой поэт духовным слухом:
Находят дни: с самим собою
Бороться сердцу тяжело.
И духа злобы над собою
Я слышу тяжкое крыло.
Победить зло в себе оказалось несравненно труднее иных «побед» над собой («горе подавлять в себе», «улыбаться» людям): «знал ли я.!» - восклицает поэт. Зло внутреннее распознается им как воздействие внешней силы зла - в соответствии со святоотеческим учением.
Объяснение:
1. Эта самая хорда (давай ндадим ей имя 西)параллельна основаниям. Именно она равна 8.
2. Хорда 西 соединяет точки касания окружностью боковых сторон.
Проведём ещё на чертеже среднюю линию трапеции, она пройдёт точно через центр вписанной окружности (не буду подробно объяснять почему, сама обоснуй, если потребуется). Давай назовём её 中.
Итак, следи за руками: важный нюанс: данная по условию хорда 西 параллельна средней линии 中.
Радиус вписанной окружности обозначим банально буквой R.
Рассмотрим прямоугольный треугольник, образованный половиной хорды 西, радиусом окружности, и куском высоты трапеции. Косинус угла между хордой и радиусом окажется, что можно записать как cos(a) = (西/2) / R = 西 / (2R). Хорошо.
Далее заметим (опять следи за руками), что этот же угол образуется между этим же радиусом, и средней линией 中, потому что хорда и средняя линия параллельны друг другу, и пересекаются общим радиусом.
Замечательно. Выразим теперь длину средней линии через радиус и косинус угла. Получится:
1/2 中 = R / cos(a) = R * 2R / 西
домножим обе стороны уравнения на 2, и получим:
中 = 4R^2 / 西
Отлично. Приближаемся к цели. Теперь выразим площадь трапеции через её высоту и среднюю линию. Тут ещё надо заметить, что высота трапеции равна ровно два радиуса, видишь из чертежа?
S = (2R) * 中 = 2R * 4*R^2 / 西 = 8 * R^3 / 西. .
Подставим цифры:
125 = 8 * R^3 / 8
R^3 = 125
R = кубический корень (125) = 5
Ура! Мы нашли радиус вписанной окружности R, он равен 5.
Отсюда сразу записываем ответ: площадь круга s = пи * R^2 = 25*пи.
Это и есть ответ, как я думаю. Но проверь за мной, что не намухлевал.