В сечении - шестиугольник, две стороны "а" которого F1А1 и ДС являются рёбрами призмы длиной по 5. 4 остальные стороны - следы сечения боковых граней призмы. Они равны √(5²+(11/2)²) = √(25+30,25) = √55,25. Высота шестиугольника равна √(АС²+СС1²) = √((2acos30°)²+11²) = = √((2*5*(√3/2))² + 121) = √(75+121) = √196 = 14. Площадь шестиугольника S равна сумме площадей прямоугольника S1 и двух треугольников, площадь S2 которых можно найти по формуле Герона. S1 = 5*14 = 70. S2 = 2√(p(p-a)(p-b)(p-c), где р - полупериметр, равный (а+в+с)/2 = = (14+2*√55,25)/2 = 7+√55,25 ≈ 14,43303. Тогда S2 = 2*17,5 = 35. ответ: S = 70 + 35 = 105.
Для решения нужно вспомнить. что: Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому h²=9·16=144 h=12 Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты: 1)9²+12²=225 √225=15 2)16²+12²=400 √400=20 Катеты равны 15см и 20 см, гипотенуза 9+16=25 см
Можно применить для решения другую теорему. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Найдем гипотенузу: 9+16=25 см Пусть меньший катет будет х. Тогда его проекция - 9см: х²= 9·25=225 х=15 см Больший катет пусть будет у: у²=25·16=400 у=20 см
4 остальные стороны - следы сечения боковых граней призмы.
Они равны √(5²+(11/2)²) = √(25+30,25) = √55,25.
Высота шестиугольника равна √(АС²+СС1²) = √((2acos30°)²+11²) =
= √((2*5*(√3/2))² + 121) = √(75+121) = √196 = 14.
Площадь шестиугольника S равна сумме площадей прямоугольника S1 и двух треугольников, площадь S2 которых можно найти по формуле Герона.
S1 = 5*14 = 70.
S2 = 2√(p(p-a)(p-b)(p-c), где р - полупериметр, равный (а+в+с)/2 =
= (14+2*√55,25)/2 = 7+√55,25 ≈ 14,43303.
Тогда S2 = 2*17,5 = 35.
ответ: S = 70 + 35 = 105.