1. Найдите координаты и длину вектора:
1) a ⃗=3i ⃗+7j ⃗-4k ⃗,
2) AB ⃗, если А(2;-1;3) В(-4; 1;-1)
2. Определите вид треугольника АВС, если А(5; -5;-1), В (5;-3;-1) , С(4;- 3; 0) и вычислите его периметр.
3. Вычислить угол между прямыми СА и СВ, если:
А (1; 3; 0), В (2; 3; -1), С (1; 2; -1).
Вычислить угол между прямыми СА и СВ.
4. Вычислите скалярное произведение векторов и угол между ними, если
c ⃗ {3; -1; 1} и a ⃗ {-1; -2; 1}
.
Проведем биссектрисы BH1 и LH2, к равным сторонам AC и KM соответственно.
Рассмотрим треугольники ABH1 и KLH2.
Стороны AB и KL равны по условию, углы A и K - также равны по условию.
Т.к. BH1 - биссектриса, она делит угол B на два равных угла, ABH1=CBH1=B/2.
Аналогично, LH2 делит угол L на углы KLH2=MLH2=L/2.
Т.к. уг. L=B по условию, L/2=B/2, след-но, углы ABH1=KLH2.
уг. A=K
AB=KL
ABH1=KLH2
Следовательно, треугольники ABH1 и KLH2 равны по стороне и двум прилежащим к ней углам (равные эл-ты выделены цветами на рис.1), след-но, все их элементы равны, в том числе, BH1=LH2.
След-но, биссектрисы BH1 и LH2, проведенные в равных треугольниках, к равным сторонам, равны между собой.
2.
Даны два равных треугольника ABC и KLM (AB=KL; BC=LM; AC=KM; уг. A=K; уг. B=L; уг C=M) (рис.2)
Проведем медианы BF1 и LF2, к равным сторонам AC и KM соответственно.
Рассмотрим треугольники ABF1 и KLF2.
Стороны AB и KL равны по условию, углы A и K - также равны по условию.
Т.к. BF1 - медиана, она делит сторону AC на два равных отрезка, AF1=F1C=AC/2.
Аналогично, LF2 делит сторону KM на отрезки KF2=F2M=KM/2.
Т.к. уг. AC=KM по условию, AC/2=KM/2, след-но, углы AF1=KF2.
уг. A=K
AB=KL
AF1=KF2
Следовательно, треугольники ABF1 и KLF2 равны по двум сторонам и углу между ними (равные эл-ты выделены цветом на рис.2), след-но, все их элементы равны, в том числе, BF1=LF2.
След-но, медианы BF1 и LF2, проведенные в равных треугольниках, к равным сторонам, равны между собой.