Объяснение:
Проводим диаметры АС и ВД: получаем прямоугольник АВСД (вписанные углы, опирающиеся на диаметр - прямые). Проведём АЕ (т.Е произвольная на стороне СД) до пересечения с продолжением ВС. Получим т.М. Обозначим точку пересечения диагоналей трапеции АВСЕ как т.L. Проведём ML. Точка пересечения ML с АВ - т.К - середина основания трапеции, т.к. прямая, проходящая через точку пересечения диагоналей и точку пересечения продолжений боковых сторон трапеции делит её основания пополам.
Осталось провести прямую ОК - перпендикуляр к АВ, т.к. ΔАОВ - равнобедренный, а значит, медиана ОК=высота.
DH = HF = 6 см.
КН - проекция наклонной МН на плоскость DKF, значит, МН⊥DF по теореме о трех перпендикулярах.
МН - искомое расстояние.
ΔDKH: ∠KHD = 90°, по теореме Пифагора
KH = √(KD² - HD²) = √(100 - 36) = √64 = 8 (см)
ΔКМН: ∠MKH = 90°, по теореме Пифагора
MH = √(MK² + KH²) = √(225 + 64) = √289 = 17 (см)
2. ВА⊥AD, BA - проекция наклонной В₁А на плоскость основания. Значит, В₁А⊥AD по теореме о трех перпендикулярах.
∠В₁АВ - линейный угол двугранного угла В₁АDB - искомый.
Так как ABCD квадрат, его сторона АВ = АС/√2 = 6 (см)
Δ В₁АВ: ∠В₁ВА = 90°,
cos∠В₁АВ = AB/AВ₁ = 6/(4√3) = √3/2
⇒ ∠В₁АВ = 30°