номер 1!
Дано:тр-к ABC, BH-медиана трк ABH=трк CBH;
Док-ть:ABC-равнобедренный;
Док-во:
1)Третий признак равенства треугольников гласит: если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны;
2)Сторона BH-общая сторона этих треугольников, медиана делит сторону AC на две равные части, то есть AH=HC, и так, в равных треугольниках по две стороны соответственно равны, по теореме, обратной третьему признаку равенства треугольников, получаем, что третьи стороны этих треугольников соответственно равны;
3) Эти стороны-AB и BC-боковые стороны трка ABC, т.е. трк ABC-равнобедренный, ч.т.д.
Если один в 5 раз больше другого, то это 30 и 150 гр.
Диагональ это высота, значит, она делит угол 150 на 60 и 90.
Вот я нарисовал.
Если диагональ - высота равна d1, углы BAD = 30, ADB = 60
AD = b = d1/sin 30 = 2d1; AB = a = bcos 30 = 2d1*√3/2 = d1*√3
Угол ADC = 150. По теореме косинусов в треугольнике ADC
AC^2 = AD^2 + CD^2 - 2*AD*CD*cos ADC =
= b^2+a^2-2a*b*cos 150 = 4d1^2 + 3d1^2 - 2*2d1*d1*√3(-√3/2) =
= 7d1^2 + 4d1^2*3/2 = 7d1^2 + 6d1^2 = 13d1^2
AC = d1*√13
Отношение диагоналей равно
AC : BD = d1*√13 / d1 = √13