3)11
Объяснение:
АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11
1. Все точки на оси абсцис имеют координату игрек равную 0.
Обозначим искомую точку как С(х; 0)
Тогда AC = BC
√((х+2)^2 + (0-6)^2) = √((х-7)^2 + (0-3)^2)
(х+2)^2 + 36 = (х-7)^2 + 9
х^2+4х+4+36 = х^2-14х+49+9
4х+40 = -14х+58
18х = 18
х = 1
ответ: С(1;0)
2. Чтобы этот четырёхугольник был параллелограмом, средины его диагоналей должны находится в одной точке.
Найдём средину АС: Μ((1+9)/2; (1-1)/2) = M(5; 0)
Найдём средину BD: (тут походу ошибка в условии, вместо одного из двух чисел 5 должно быть -5, допустим, у D вторая координата должна равнятся -5) N((3+7)/2; (5-5)/2) = N(5;0)
M совпадает с N, значит, данный четырёхугольник является параллелограмом.
АС = √((9-1)^2+(-1-1)^2) = √(64+4) = √68 = 2√17 см
ВD = √((7-3)^2+(-5-5)^2) = √(16+100) = √116 = 2√29 см
3. С треугольника NMO: MO = NO*ctg45° = 6*1 = 6 см
MN = NO/sin45* = 6√2 см
С треугольника NKO: NK = √(NO^2+KO^2) = √(36+16) = √52 = 2√13 см
Формула медианы треугольника:
m = 1/2*√(2a^2+2b^2-c^2), где a, b - прилегающие стороны, с - противолежащая сторона.
m = 1/2 * √(2*72+2*100-52) = 1/2 * √292 = √73 см