ответ: 1) 6 2)188,4 ( или 60π)
Объяснение:
Пусть х -внешний угол правильного многоугольника,тогда х+60° - его внутренний угол. Внешний и внутренний углы - смежные ⇒
их сумма равна 180° по свойству смежных углов, т.е.
х+х+60°=180°,
2х= 180°-60°,
х=120°:2,
х=60°,
х+60°=120°.
Сумма внутренних углов правильного многоугольника равна 180°(n-2). Решим уравнение: 120°n =180°(n-2),
120°n=180°n - 360°,
120°n -180°n= - 360°,
-60°n= - 360°
n= 6. ответ: 6
2) По свойству сторон четырёхугольника, описанного около окружности, сумма боковых сторон равнобедренной трапеции равна сумме оснований, т.е. 20+12= 32, а одна боковая сторона равна 32:2=16. Если из вершин верхнего основания опустить высоты, то они отсекут по бокам 2 треугольника, равных по гипотенузе и катету
( гипотенуза равна 16, а нижний катет равен (20-12):2=4 ).
Из теоремы Пифагора найдем высоту:
h=√(16²-4²)=√(256-16)=√240=4√15.
Значит диаметр вписанной окружности равен 4√15 и r=2√15 .
S круга =πг²= π*(2√15)²=60π=60*3,14=188,4. ответ: 188,4.
ответ:4)а 5)в 6)б 7)в
Объяснение:4)Т.к центральный угол О =100°=> и дуга, на которую он смотрит тоже равна 100°,тогда х=50,потому что он вписаный(вписаный угол равен половине дуги ,на которую он опирается)
5)угол равен 70,тогда дуга равна 140(описанный угол,дуга в 2р больше него)
Вся окружность =360
360-140=220(это дуга,на которую смотрит х),тогда сам х=220:2=110(угол вписанный)
6)О=64,дуга тоже 64(центральный),х описанный =64/2=32
7)Т.к ВО(это радиус)=АД,то АД=ДО т.к ДО тоже радиус,тогда ВО в 2р меньше ВО,угол В=90 т.к радиус ,проведенный в точку касания явл. перпендикуляром на эту касательную.Тогда мы можем применить свойство треугольника :сторона,лежащая напротив угла в 30°=половине гипотенузы ,тогда угол ВАО=30,а ВАО=ОВС т.к это касательные вышли из 1ой точки,тогда угол ВАС=60