1)ВК + КН = ВН
ВН = 6,5 см + 2,5 см = 9 см
2)Δ АКН ~ ΔВКС (подобны)
т.к. ∠ НВС = ∠АНВ = 90° оба прямоугольные
∠АКН = ∠ВКС - как вертикальные
3) Найдём коэффициент подобия k
k= ВК/КН = 6,5/2,5 = 2,6
4) С коэффициента подобия k = 2,6 выразим длины сходственных сторон АН и ВС.
АН - х
ВС= 2,6х
АВ = ВС - как стороны ромба
АВ = 2,6х
5) Из прямоугольного Δ АВН с теоремы Пифагора получим уравнение:
АВ² = ВН² + АН²
(2,6х)² = 9² + х²
6,76х² = 81 + х²
6,76х² - х² = 81
5,76х² = 81
х² = 81 : 5,76
х² =14,0625
х = √14,0625
х = 3,75 см
6) Находим сторону ромба АВ:
АВ = 2,6 · 3,75 = 9,75 см
7) Наконец находим площадь ромба
S = ah
S = 9,75 · 9 = 87,75 cм²
ответ: S = 87,75 см²
ABCD - трапеция
BC ║ AD
AB = 10 см
CD = 17 см
BC = 20 см
CD = 41 см
СН ⊥ СD
CH - h - высота
h - ?
Решение:
1) Проведем СК ║ АВ
В получившемся параллелограмме АВСК противоположные стороны равны:
АВ = СК = 10 см
ВС = КА = 20 см
2) Рассмотрим ΔCKD
CD = 17 см
CK = 10 см
KD = AD - KA = 41 - 20 = 21 см
Высота СН треугольника СКD является высотой данной трапеции.
3)А теперь найдём площадь ΔCKD по трем его сторонам по формуле Герона.
где р - полупериметр
S = 84 cм²
4)
А теперь с формулы площади треугольника через высоту
найдём высоту h
h = CK = 8 см
ответ: 8 см.