Сторона равная 37 см. будет являться гипотенузой, т.к. напротив большего угла лежит большая сторона. Чтобы доказать что этот тругольник прямоугольный нужно знать теорему Пифагора.
1225+124=1349 а квадратный корень из 1349 = 37 см.
Так как искомая окружность должна касаться хорды АВ данной нам окружности радиуса R=15 и самой этой окружности, ясно, что искомая окружность расположена внутри кругового сегмента, стягиваемого хордой АВ. Поскольку хорда АВ делит круг на два круговых сегмента, существует и два варианта решения. На рисунке представлены оба варианта расположения искомой окружности. Точка касания "С" этой окружности с хордой АВ определена. Проведем радиус r=O1C искомой окружности в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4. Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ. ОМ=√(АО²-АМ²)=√(15²-12²)=9. В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности. Тогда для первого варианта (окружность расположена в большем секторе): ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем: ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или 225-30r+r²=16+r²-18r+81. Отсюда r=32/3. Для второго варианта (окружность расположена в меньшем секторе): ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.
Боковые стороны трапеции лежат на прямых a и b. Эти прямые не параллельны и лежат в одной плоскости, значит, они пересекаются. Тогда через эти прямые можно провести единственную плоскость, обозначим её за β. Плоскость β и будет плоскостью трапеции, так как все 4 вершины трапеции лежат на прямых a и b и лежат в β.
Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости. Из того, что прямая a параллельна плоскости α, следует, что в плоскости α существует прямая a', такая, что a || a'. Аналогично, из параллельности b и α следует, что в α существует прямая b', такая, что b || b', При этом a' и b' не совпадают, так как a и b не параллельны.
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Из того, что a || a' и b || b' и того, что a и b пересекаются, следует, что α || β, что и требовалось доказать.
√12²+35²=37 теорема Пифагора 12 и 35 см - катеты, 37 - гипотенуза.