В равных треугольниках соответственные стороны равны.
В ΔCDE задана только одна сторона СЕ = 11 см, тогда как в ΔHOF заданы 2 стороны (HO =4,7 см и OF = 10,5 см); так как среди двух заданных сторон треугольника HOF нет ни одной стороны, равной 11 см, то делаем вывод о том, что третья сторона ΔHOF равна стороне СЕ ΔCDE:
НF = CE = 11 см.
2) Из п. 1 решения следует, что:
вершине Н треугольника HOF соответствует вершина С в треугольнике CDE;
вершине F треугольника HOF соответствует вершина Е в треугольнике CDE.
Следовательно:
вершине О треугольника HOF соответствует вершина D в треугольнике CDE, откуда:
Дано: трапеция ABCD равнобедренная (AD || BC ; AB =CD) AE =EB ; BF =FC ; CM=MD ; DN =NA . ----- док-ать EFMN ⇒ромб
Середины любого четырехугольника (даже не выпуклого) образуют параллелограмм. В случае равнобедренной трапеции ( поскольку диагонали равны ) этот четырехугольник будет ромб . --- EF и NM средние линии соответственно треугольников ABC и ADC. Следовательно: EF =AC/2 =NM и EF || AC , NM || AC ⇒ EF || NM . Четырехугольник EFMN параллелограмм. ΔEAN = ΔMDN (по первому признаку равенства Δ -ов) AE =AB/2 =DC/2 =DM и AN =DN =AD/2 ; ∠EAN = ∠MDN ) Значит EN = MN . Стороны параллелограмма EFMN равны⇒ EFMN -ромб. Доказано ------------------------------------------------------------------------------------------- * * * Можно и так ΔABD = ΔDCA (по первому признаку равенства Δ -ов) (AD - общее , AB =DC , ∠BAD =∠CDA * * * см фото
CD = 4,7 см; DE = 10,5 см; HF = 11 см.
Объяснение:
1) Согласно условию задачи, ΔCDE = ΔHOF.
В равных треугольниках соответственные стороны равны.
В ΔCDE задана только одна сторона СЕ = 11 см, тогда как в ΔHOF заданы 2 стороны (HO =4,7 см и OF = 10,5 см); так как среди двух заданных сторон треугольника HOF нет ни одной стороны, равной 11 см, то делаем вывод о том, что третья сторона ΔHOF равна стороне СЕ ΔCDE:
НF = CE = 11 см.
2) Из п. 1 решения следует, что:
вершине Н треугольника HOF соответствует вершина С в треугольнике CDE;
вершине F треугольника HOF соответствует вершина Е в треугольнике CDE.
Следовательно:
вершине О треугольника HOF соответствует вершина D в треугольнике CDE, откуда:
CD = HO = 4,7 см;
DE = OF = 10,5 см.
ответ: остальные стороны треугольника CDE:
CD = 4,7 см; DE = 10,5 см;
неизвестная сторона треугольника HOF HF= 11 см.