По свойству отрезков касательных к окружности ,проходящих через одну точку,имеем,что углы,которые они образуют с прямой,проходящей через эту точку и центр окружности равны. Соединим центр окружности с вершинами тупого и острого углов. Получаем прямоугольный треугольник с прямым углом в центре окружности,поскольку сумма углов,прилежащих к боковой стороне,равна 180(острые углы треугольники - углы при биссектрисах острого и тупого углов трапеции). h треуг=r.(через Т.Пифагора доказывается среднее геом.проекций катетов на гип.) r=V(25*4)=10. В трапеции 2r=h,а в прямоуг.трап. ещё и h=меньшая боковая Следовательно,боковая 2*10=20. Значит,суммы противоположных 29+20=49. Окружность касается боковой стороны в серединах, значит,части 10 и 10. По св-ву отрезков касательных,получаем,меньшая - 14, большая - 35 S=(35+14)\2*20=490 ответ:490
Вектор АВ (-2i:3j; 0k), АВ = 3,6056
Вектор АС (-2i;0j;6k), АС = 6,3246
Вектор АД (0i;3j;8k). АД = 8,544
Модуль вектора d = √ ((х2 - х1 )^2 + (у2 - у1 )^2 + (z2 – z1 )^2).
2) Угол между векторами (АВ ) ⃗ и (АС) ⃗;
АВ-АС 4 4 13 3,606 40 6,325 22,8 cos α = 0,175412
акос α = 1,394472 радиан = 79,89739 градус.
3) Проекция вектора (АD) ⃗ на вектор (АВ) ⃗
Решение:
Пр ba = a · b|b|
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bza · b = 0 · (-2) + 3 · 3 + 8 · 0 = 0 + 9 + 0 = 9
Найдем модуль векторов:
|b| = √bx² + by² + bz² = √(-2)² + 3² + 0² =
= √4 + 9 + 0 = √13
Пр ba =9/√13 = 9√13/13 ≈ 2.4961508830135313.