Предположим, что это параллелограмм АВСД, ВН=12 - высота к стороне АД, ВН1=20 - высота к стороне СД. Угол НВН1=60. В прямоугольном треугольнике Н1ВС угол Н1ВС=угол НВС-угол НВН1=90-60=30. В прямоугольном треугольнике (Н1ВС) против угла в 30 градусов лежит катет (СН1) равный половине гипотенузы (ВС). Примем катет СН1 за х, тогда, ВС=2х по теореме Пифагора ВС в квадрате= ВН1 в квадрате+СН1 в квадрате. Подставляем цифры и х: 2х в квадрате=20 в квадрате+х в квадрате,3х в квадрате=400, х=20 корней из 1/3, тогда ВС=2*20 корней из 1/3=40 корней из 1/3. Площадь = АД*ВН (АД=ВС - так как АВСД параллелограмм) Площадь=40 корней из 1/3*12=480 корней из 1/3
Все задачи стереометрии решаются при планиметрии. Единственное условие: правильно выполненный чертёж. Давай сделаем чертёж вместе. Чертишь плоскость. Над нею бери точку В. Через точку В проводишь прямую, протыкающую плоскость. Под плоскостью на этой прямой отмечаешь точку А. Теперь отмечай точку К. Она на АВ и на плоскости. Через точку К проводи небольшой отрезок в плоскости. Это отрезок KL. Теперь соединяй точки А и L, продолжай дальше над плоскостью. Осталось провести ВС. Надо учесть, что ВС || KL. Получается картинка:Δ АВС, сделанный из плотного картона, проткнул нашу плоскость и прорезал её по KL. Чертёж готов. Теперь смотрим: Δ АВС подобен Δ AKL (по равенству углов) ⇒ВС : KL = AC : AL, 3 : 1 = AC : 12 АС = 3·12 :1 = 36 АС = 36
Предположим, что это параллелограмм АВСД, ВН=12 - высота к стороне АД, ВН1=20 - высота к стороне СД. Угол НВН1=60. В прямоугольном треугольнике Н1ВС угол Н1ВС=угол НВС-угол НВН1=90-60=30. В прямоугольном треугольнике (Н1ВС) против угла в 30 градусов лежит катет (СН1) равный половине гипотенузы (ВС). Примем катет СН1 за х, тогда, ВС=2х по теореме Пифагора ВС в квадрате= ВН1 в квадрате+СН1 в квадрате. Подставляем цифры и х: 2х в квадрате=20 в квадрате+х в квадрате,3х в квадрате=400, х=20 корней из 1/3, тогда ВС=2*20 корней из 1/3=40 корней из 1/3. Площадь = АД*ВН (АД=ВС - так как АВСД параллелограмм) Площадь=40 корней из 1/3*12=480 корней из 1/3