АВ перпендикулярна плоскости альфа
АС, АВ - наклонная
Угол АСВ=30°
Угол АДВ=60°
Радиус окружности=√3
Найти: АВ
Т.к. АВ перпендикулярна плоскости альфа, то В проекция точки А на плоскости альфа, ВС и ВД - проекция АС и АД
На плоскости альфа, соответственно ВС принадлежит плоскости альфа
ВД принадлежит плоскости альфа, т.к. АВ перпендикулярна плоскости альфа,то ВС перпендикулярна плоскости альфа, ВД перпендикулярна плоскости альфа, значит АВ перпендикулярна ВС, АВ перпендикулярна ВД, и треугольники АВС и АВД - прямоугольные
Треугольник АВС:АВ/АС=sin угла АСВ
АС=АВ/sin угла АСВ=АВ/sin30°=АВ/1/2=2АВ
Треугольник АВД=АВ/АД=sin угла АДВ
АД=АВ/sin угла АДВ=АВ sin60°=AB/√3/2=2/√3AB
Треугольник АСД - прямоугольный (угол АСВ+угол АДВ=90°)
Значит: R=1/2СД, тогда CД=2*√3=2√3
По теореме Пифагора:
Треугольник АСД=АС²+АД²=СД²
2АВ²+2/√3АВ²=2√3²
4АВ²+4/3АВ²=12
16/3АВ²=12 |:3/16
АВ²=9/4
АВ=3/2
ответ: АВ=3/2
Объяснение:
1) Для начала надо решить эту задачу, а затем поделить ответы на 2 и всё сложить.
3х - 1 сторона.
4х - 2 сторона.
5х - 3 сторона.
48 см - Р данного треугольника.
Составим и решим уравнение:
3х+4х+5х = 48;
12х = 48;
х = 4.
3×4=12 (см) - 1 сторона.
4×4=16 (см) - 2 сторона.
5×4=20 (см) - 3 сторона.
1.12÷2 = 6 - середина 1 отрезка.
2.16÷2 = 8 - середина 2 отрезка.
3.20÷2 =10. - середина 3 отрезка.
4.6+8+10 = 24 - Р треуг., вершины которого равны середине сторон.
ответ: 24.
2) Вообще, можно просто поделить Р первого данного нам треугольника на 2, то бишь:
48÷2 = 24.
ответ: 24.
Но Вам мой совет, если Вы всё-таки спросили это для домашней работы, думаю, лучше всё-таки использовать первый вариант.