Призма - правильная четырехугольная. в основании её - квадрат. диагональ наклонена к плоскости основания под углом 45°. значит, диагональ квадрата - основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. длина этой гипотенузы дана в условии - 4 см пусть х - катеты этого треугольника 4=х√2 х=4: √2=4√2: (√2*√2)=2√2 диагональ основания квадрата =2√2 высота призмы =2√2 основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. радиус этой окружности равен половине стороны квадрата - основания призмы. найдем эту сторону из формулы диагонали квадрата: d=а√2 мы нашли d=2√2, значит сторона квадрата а=2 r= 2: 2=1 имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. s =2πr*h= 2π*2√2 см²=4π√2 см²
ъясните. (1б) в) Как расположена по отношению к плоскости прямая , параллельная прямой 11? ответ обоснуйте. (1б) 6. Плоскость проходит через основание трапеции . Точки и – середины боковых сторон трапеции . а) Докажите, что прямая параллельна плоскости . (1б) б) Найдите , если = 4, = 6. (1б) 7. Параллелограммы и 11 не лежат в одной плоскости. Докажите параллельность плоскостей 1 и 1. ( 2б) 8. Дан тетраэдр . ∈ , ∈ , ∈ . а) Постройте точку пересечения с плоскостью . (1б) б) Постройте линию пересечения плоскости и плоскости . (1б) 9. Концы двух равных перпендикулярных отрезков и лежат на двух параллельных плоскостях. а) При каком дополнительном условии пересечения отрезков является квадратом? (2б) б) Докажите, что если не является квадратом, то - трапеция, в которой высота равна средней линии. (2б) 10. Дан куб 1111.Точка - середина ребра 11. Найдите косинус угла между прямыми и 1. (5б)