Побудувати точки, в які переходять точки М(-2;0), К(1;3) при повороті на кут 90° проти годинникової стрілки відносно початку координат. Вказати координати отриманих точок.
Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
Даны координаты точек A(1;4), B(1;1) , C(4;7).
Уравнение прямой, включающей сторону ВС:
Вектор BC : (4-1=3; 7-1=6) = (3; 6).
(x - 1)/3 = (у - 1)/6, после сокращения знаменателей на 2, получаем:
(x - 1)/1 = (у - 1)/2 это каноническое уравнение стороны ВС.
Или 2х - 2 = у - 1 или 2х - у - 1 = 0 общее уравнение.
у = 2х - 1 с угловым коэффициентом. к(ВС) = 2.
Угловой коэффициент перпендикуляра АН к стороне ВС равен:
к(АН) = -1/к(ВС) = -1/2.
Уравнение АН: у = (-1/2)х + в. Для определения параметра в подставим координаты точки А: 4 = (-1/2)*1 + в, отсюда в = 4 + (1/2) = 9/2.
Уравнение АН: у = (-1/2)х + (9/2).
Координаты точки Н находим как точки пересечения прямых АН и ВС.
(-1/2)х + (9/2) = 2х - 1,
(5/2)х = (11/2), отсюда находим х(Н) = 11/5 = 2,2.
у(Н) = 2*(11/5)-1 = 17/5 = 3,4.
ответ: Н(2,2; 3,4).