М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Polikaza
Polikaza
02.02.2021 00:03 •  Геометрия

Дано АВ =ВС =18 см периметр трикутника АВС = 48 см точка О центр вписаного у трикутник АВС обчисли довжину відрізків КС ВМ

👇
Открыть все ответы
Ответ:
Дариа9636
Дариа9636
02.02.2021
Давайте разберем этот вопрос пошагово.

1. Из условия задачи, нам дано, что треугольник ABC является равносторонним.

2. Так как треугольник равносторонний, то у него все стороны равны между собой. Обозначим длину каждой стороны треугольника как "a".

3. Зная, что BO = 6 метров, мы знаем, что это радиус вписанной окружности треугольника. Вспомним свойство равностороннего треугольника: радиус вписанной окружности проходит через центр треугольника и делит его на три равные дуги.

4. Таким образом, радиус вписанной окружности BO является высотой треугольника, которая делит его на две равные половины.

5. Найдем высоту треугольника, используя теорему Пифагора. Построим прямую от вершины C, проходящую через середину стороны AB. Обозначим эту точку как M. Также обозначим высоту треугольника как h.

6. Так как треугольник равносторонний, то сторона AB равна длине a. Используя свойства равностороннего треугольника, мы можем найти длину стороны AM, которая равна a/2.

7. Из треугольника AMC можно найти длину AM, используя теорему Пифагора: AM^2 + CM^2 = AC^2. Так как треугольник равносторонний, то AC равно a, а CM - это радиус вписанной окружности BO, то есть 6 метров. Получаем AM^2 + 6^2 = a^2.

8. У нас есть еще одна пара равных сторон треугольника - AC и BC. Из равенства длин сторон AC и BC можем найти длину связанных отрезков - AM и BM (где BM это половина стороны треугольника). Получаем AM = BM.

9. Таким образом, можем записать уравнение вида AM + BM = a. Подставим полученное значение AM: AM + AM = a, а это равно BM + BM = a. Получаем 2AM = BM. Значит AM = BM = a/2.

10. Вернемся к уравнению AM^2 + 6^2 = a^2. Подставим значение AM: (a/2)^2 + 6^2 = a^2. Раскроем скобки: a^2/4 + 36 = a^2. Умножим обе части уравнения на 4: a^2 + 144 = 4a^2. Выразим a^2: 3a^2 = 144. Разделим обе части уравнения на 3: a^2 = 48. Извлечем квадратный корень из обеих частей уравнения: a = √48.

11. Таким образом, длина каждой стороны треугольника a равна √48.

12. Чтобы найти радиус вписанной окружности r, воспользуемся формулой для радиуса вписанной окружности равностороннего треугольника: r = (√3 / 6) * a.

13. Подставим значение a: r = (√3 / 6) * √48.

14. Упростим выражение: r = (√3 / 6) * √16 * √3 = (√3 / 6) * 4√3 = 2√3.

Таким образом, длина каждой стороны треугольника a равна √48 метров, а радиус вписанной окружности r равен 2√3 метров.
4,7(12 оценок)
Ответ:
Карандш
Карандш
02.02.2021
Хорошо, давайте вычислим неизвестные величины, используя информацию, что efgh является квадратом со стороной 10.7 см.

Первым шагом в решении этой задачи будет определение, какие неизвестные величины мы должны найти. В этом случае, так как мы знаем, что efgh - это квадрат, у нас есть несколько величин, которые могут быть интересными: периметр (P) и площадь (A).

Давайте начнем с вычисления периметра квадрата. Периметр квадрата вычисляется по формуле P = 4 * сторона.

В нашем случае, сторона квадрата равна 10.7 см. Подставим это значение в формулу периметра и вычислим:

P = 4 * 10.7
P = 42.8 см

Таким образом, периметр квадрата efgh равен 42.8 см.

Теперь перейдем к вычислению площади квадрата. Площадь квадрата вычисляется по формуле A = сторона^2.

В нашем случае, сторона квадрата равна 10.7 см. Подставим это значение в формулу площади и вычислим:

A = 10.7^2
A = 114.49 см^2

Таким образом, площадь квадрата efgh равна 114.49 см^2.

Итак, чтобы ответить на ваш вопрос, периметр квадрата efgh составляет 42.8 см, а площадь составляет 114.49 см^2.
4,6(67 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ