Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Если хорошенько разобраться, решается все очень просто)
В основании пирамиды лежит равносторонний тр-к. его высоты, медианы и биссектрисы равны и точкой пересечения делятся в отношении 1/2. т. к бОльшая часть будет являться радиусом описанной окружности а меньшая часть - радиус вписанной окружности. обозначим основание тр-к АВС. точка пересечения высот О. вершина пирамиды - Н, высота АА1. ОН по условию =АА1 =9 ОА1= 1/3 АА1= 9/3=3
рассмотрим тр-к НОА1 НА1(апофема) = корень из (9*9+3*3)= корень из 90
Я незнаю потому что незнаю
Объяснение:
Я знаю потому что не знаю