1) Для начала построим данное сечение: Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками: а) Можно соединять только две точки, лежащие в плоскости одной грани. Точки В и С лежат в одной плоскости, значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы. Точки В и К лежат в одной плоскости → получаем отрезок ВК б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам. Грани ВВ1С1С и АА1D1D параллельны В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 ) Через точку К проводим прямую, паралельную прямой ВС → получаем точку L. Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 ) Точки C и L лежат в одной плоскости → получаем отрезок CL
Из этого следует, что четырёхугольник BCLK – данное по условию сечение.
АВСD – равнобедренная трапеция → АВ = CD Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1 Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL. Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )
2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС. Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.
3) Площадь трапеции BCLK равна: S bclk = 1/2 × ( KL + BC ) × KM 48 = 1/2 × ( 4 + 8 ) × КМ 48 = 6 × КМ КМ = 8 см
Рассмотрим ∆ АМК (угол КАМ = 90°): cos AMK = AM/KM AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см По теореме Пифагора: КМ² = АМ² + АК² АК² = 8² – 4² = 64 – 16 = 48 АК = 4√3 см АА1 = 2 × AK = 2 × 4√3 = 8√3 см
Обьём прямой призмы рассчитывается по формуле: V ( призмы ) = S осн. × h
V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²
1. Гипотенуза прямоугольного треугольника равна 9 см, катет равен 4,5 см. Определите градусные меры углов треугольника.
90 градусов , 30 гр, 60 гр
2.Гипотенуза прямоугольного треугольника равна 16 см, острый угол равен 30 градусов. Определите, чему равен катет, лежащий напротив этого угла.
16/2=8см
3.Определите градусную меру острых углов прямоугольного треугольника, если его катеты равны 4,45 см.
45 гр и 45 гр
4.Сколько высот можно провести из вершины прямого угла?
3
5.Один из углов прямоугольного треугольника на 54 градусов больше другого. Найти величины всех углов треугольника.
18,72,90
6.В треугольнике АВС угол С равен 90 градусов, угол В равен 60 градусов, АВ = 43 см. Чему равна сторона ВС?
21,5 см
7. В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. Найдите величину угла A, если DB = 6, а BC =12.
30 градусов