ответ: Р = 240 см.
Объяснение:
Рассмотрим 4-угольник ANCM:
Угол NCM = 360 - угол MAN - 90 - 90 (так как AN,AM - высоты) = 360 - 180 - 60 = 120 градусов, причём по свойствам ромба угол NCM равен углу BAD.
Теперь рассмотрим сам ромб. Так как его тупые углы нам известны, то можно найти острые углы:
Угол ADC равен углу ABC и равен (360 - 120 -120)/2 = 120/2 = 60 градусов.
Рассмотрим треугольник ADM. Он прямоугольный с углом AMD = 90 градусов (АМ - высота). Найдём угол DAM:
Угол DAM равен (180 - 90 - угол ADM) = (90 - угол ADC) = (90 - 60) = 30 градусов. Катет против угла в 30 градусов равен половине гипотенузы, то есть DM = 1/2 AD => AD = 2DM = 2 * 30 = 60 см.
Так как в ромбе все стороны равны, то Рромба = 4 * AD = 4 * 60 = 240 см.
Дано:
△ABC - равнобедренный.
BC - основание.
BC = 20 см.
AM - медиана.
∠BCA = 53˚.
Найти:
BM; ∠BAM; ∠BMA.
Решение.
Т.к. △ABC - равнобедренный, => ∠BCA = ∠CBA = 53˚.
⇒ AB = BC.
Свойство равнобедренного треугольника и медианы.
Проведенная медиана к основанию в равнобедренном треугольнике является и высотой, и биссектрисой.
⇒ BM = MC = 20 : 2 = 10 см. (по свойству медианы)
⇒ ∠CMA = ∠BMA = 90˚. (по свойству высоты)
⇒ ∠BAM = ∠CAM = 180 - (90 + 53) = 37°.
ответ: 10 см; 90°; 37°.