Точки X и Y лежат в плоскости α, а точка Z не находится в этой плоскости. Через серединные точки отрезков XZ и YZ проведена прямая b. Докажи, что эта прямая параллельна плоскости α.
(Дополни доказательство правильными словами или выражениями из списка.)
1. Если точки A и B — середины отрезков XZ и YZ, то отрезок AB
средняя линия треугольника
.
2. Как известно,
средняя линия треугольника
параллельна
третьей стороне треугольника.
3. Если прямая
параллельна
прямой, лежащей в некоторой плоскости, то она параллельна этой плоскости.
4. Значит, прямая b, на которой находится
средняя линия треугольника
,
параллельна
плоскости α, в которой лежит третья сторона треугольника.
Объяснение:
Находим боковые стороны.Для этого соединим вершины А иС.Полученный ΔАСД-равнобедренный,так какАС-биссектриссауглаС,уголВСА=углуАСД,
уголВСА=углуСАД(углы при двух параллельных и секущей) . АД=СД=в
Находим стороны трапеции:
Р=а+в+в+в=в-14+в+в+в=4в-14; в=(Р+14)/4=100/4=25(см); а=25-14=9(см)
Находим высоту трапеции:из точкиС опускаем перпендикулярСМ на основаниеАД.
МД=(в-а)/2=(25-9)/2=8(см).
По теоремеПифагора:СМ²=СД²-МД²;СМ=√25²-8²=√561=23,68(см).
S=(9+25)/2*23.68=402.56(см²)
ответ:площадь трапецииравна402,68см²