М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
irajhgmvm
irajhgmvm
26.09.2021 02:15 •  Геометрия

Дано відрізок CD,кінці якого мають координати C(-4;1),D(2;-3). Побудуйте відрізок, симетричний відрізок CD відносно осі абцис,та запишіть координати його кінців​

👇
Открыть все ответы
Ответ:
Кириджа114
Кириджа114
26.09.2021

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​
4,8(54 оценок)
Ответ:
valeriargavina
valeriargavina
26.09.2021

В условии явно не отобразилось √2 при значении диагонали. .  

Правильное условие задачи:

Найдите косинус угла между плоскостями квадрата ABCD и равностороннего треугольника ABM, если диагональ квадрата равна 4√2 см и расстояние от точки M до стороны DC равно 5 см.

Решение. (см. рисунок 1) 

Диагональ квадрата делит его на два равных прямоугольных треугольника с острым углом 45°. Поэтому сторона квадрата равна АВ=4√2•sin 45°=4 (cм).

Искомый угол - угол между высотой МН правильного треугольника АМН  и отрезком КН, проведенными перпендикулярно к середине  АВ. 

МН= АВ•sin60°=4•√3/2=2√3 

Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой. 

По т. о трёх перпендикулярах МК ⊥ - ⇒ это расстояние от М до CD, равное 5 см. По т.косинусов  

cos∠MHK=(KM²-KN²+MH²):(-2•KH•MH)

cos∠MHK=(25- 16-12):(-2•4•2√3)=√3/16

              * * *

Решение по данному в вопросе условию: 

Если диагональ квадрата равна 4 см,  то, т.к. она делит квадрат на два равных прямоугольных равнобедренный с острым углом 45°,  его сторона равна 4•sin45°=2√2. 

Искомый угол - угол между перпендикулярами, проведенными в каждой плоскости к одной точке на стороне АВ. (на линии их пересечения), т.е. это угол между высотой МК треугольника АМВ и отрезком КН, проведенным через  середины сторон АВ и СD квадрата, т.к. МК⊥АВ, и НК⊥АВ.

  АВ - общая для квадрата и равностороннего треугольника, и 

МК=АВsin 60°=2√2•√3/2=√6

Расстояние от точки до прямой - длина отрезка, проведенного из данной точки перпендикулярно к прямой. 

Т.к. КН ⊥СD,  то по т. о трех перпендикулярах  МК⊥CD, ⇒ МК=5.

По т.косинусов из ∆ МКН 

cos ∠MKH=(MH²-MK²-KH²)² (- 2MK•KH)

cos ∠MKH=(25-8-6): (-2•2√12)

cos ∠MKH= -11/8√3= - 0,7939 Это косинус тупого угла. 

По данному решению рисунок в приложении 2. 

4,6(22 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ