Ромб - это частный случай параллелограмма, у которого все стороны равны. Рассмотрим ромб ABCD. Угол А=углу C = 40 градусв. Сумма углов в четырёхугольнике равна 360 градусов. Поэтому оставшиеся углы В и D ...В=D=[360-(2*40)]/2=140 градусов. Учитывая, что перед нами ромб, у него все стороны раны, имеем дело с двумя равнобедренными треугольниками с общей стороной BD. Раз треугольники равнобедренны, значит их углы при основании равны. Стало быть меньшая диагональ BD является биссектрисой углов B и D. Следовательно угол между меньшей диагональю ромба BD и стороной равен 70 градусов. Удачи=)
Найти: проекцию меньшего катета на гипотенузу.
Решение:
--- 1 ---
Гипотенуза по т. Пифагора
√(7² + 24²) = √(49 + 576) = √625 = 25
--- 2 ---
Площадь треугольника АСД через катеты
S = 1/2*7*24 = 7*12 = 84 см²
Площадь треугольника АСД через гипотенузу и высоту
S = 1/2*25*ВД = 25/2*ВД
Приравниваем
25/2*ВД = 84
ВД = 168/25
--- 3 ---
В ΔАВД по т. Пифагора
7² = (168/25)² + АВ²
АВ² = (7*25/25)² - (168/25)² = (175/25)² - (168/25)² = (175 - 168)(175 + 168)/25² = 7*343/25² = 49²/25²
AB = 49/25
Всё :)