М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Karina121334
Karina121334
28.04.2021 21:49 •  Геометрия

В треугольнике ABC на его медиане BM отмечена точка K так, что BK : KM = 5 : 2. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади треугольника BKP к площади четырёхугольника KPCM.

👇
Открыть все ответы
Ответ:
NEASA
NEASA
28.04.2021

В условии не хватает слов "параллельно АС". В противном случае задача не имеет решения (точнее одного решения, сами по себе решения есть, но - не интересные :) одно из них - треугольник MBD).

Пусть b=8; a = 4; О - центр основания, МО - высота пирамиды, сечение пересекает MD в точке Q (MQ = QD), МС в точке Р, MA - в точке G, МО в точке К. Надо найти площадь четырехугольника BGQP. 

Плоскость сечения II АС, поэтому GP II AC, откуда MG/GA = МК/КО = MP/PC = 2/1; поскольку BQ и MO - медианы, и К - точка пересечения медиан треугольника MBD.

то есть 

GP = (2/3)*AC = a*2√2/3; (из подобия треугольников AMC и GMP)

И еще, поскольку у квадрата диагонали перпендикулярны, AC перпендикулярно плоскости треугольника MDB, откуда следует, что GP перпендикулярно BQ, то есть площадь S четырехугольника BGQP равна S = BQ*GP/2;

Остается найти медиану m = BQ равнобедренно треугольника MDB с боковыми сторонами MD = MB = b = 8; и основанием BD = a√2; (a = 4);

(2*m)^2 = 2(a√2)^2 + b^2;

m = (1/2)*√(4*a^2 + b^2);

S = (1/2)*(a*2√2/3)*(1/2)*√(4*a^2 + b^2) = (1/6)*a*√(8*a^2 + 2*b^2);

ну и надо подставить числа.

если b = 2*a, то S = (2/3)*a^2 = 32/3;


27.04.2015

Мне предложили тут что-то изменить. Якобы ответ должен быть в 2 раза меньше. Я очень буду рад, если мне предложат грамотный анализ решения. Но я могу показать на пальцах, что ответ верный. Это как раз очень просто. В сечении получается дельтоид, у которого одна из диагоналей BQ = BD; а вторая - GP = (2/3)*AC; отсюда мгновенно понятно, что площадь сечения составляет 2/3 площади основания. 

(площадь сечения) = BQ*GP/2 = (2/3)*BD*AC/2 = (2/3)*(площади основания) = (2/3)*4^2 = = 2*16/3 = 32/3; 

любые попытки найти тут ошибку могут вызвать только улыбку :

4,4(8 оценок)
Ответ:
letochka111
letochka111
28.04.2021

искомое сечение -  симметричный четырехугольник  BPKL

диагонали  PL , BK  пересекаются под углом 90 град

по условию

стороны основания  AB=BC=CD=AD =4

боковые ребра  MA=MB=MC=MD =8

точка К - середина ребра MD ;  KD = MD /2 = 8/2=4

ABCD -квадрат

диагональ  AC = BD =  4√2

пересечение диагоналей  точка  F  :  BF =FD = BD/2 =4√2 /2 =2√2

BK - медиана треугольника  MBD

длина медианы  BK = 1/2 √(2 BM^2 +2 BD^2  - MD^2 ) =1/2 √(2*8^2 +2*(4√2)^2  - 8^2 ) =4√2

по теореме косинусов

cos KBD = ( KD^2 - (BK^2+BD^2) )/ (-2*BK*BD)= ( 4^2 - ((4√2)^2+(4√2)^2) )/ (-2*4√2*4√2)= 3/4

MF - высота

треугольник  EBF - прямоугольный

BE = BF / cos KBD = 2√2 / 3/4 = 8√2/3

KE = BK - BE =4√2 -8√2/3 =4√2/3

по теореме Пифагора EF =√(BE^2 - BF^2) =√( (8√2/3)^2 - (2√2)^2) =2√14/2

MF - высота

треугольник  MFB - прямоугольный

по теореме Пифагора MF =√( MB^2 -BF^2) =√( 8^2- (2√2)^2 ) =2√14

ME =MF -EF =2√14 -2√14/2 = 2√14/2

треугольники  MPL  ~ MCA    подобные

PL / AC = ME /MF ; PL = AC * ME /MF = 4√2 * 2√14/2 /2√14 =2√2

площадь   сечения(четырехугольника  BPKL)     

Sс = PL*BK *sin<BEP /2 = 2√2*4√2*sin90 /2 = 8

ответ  8


Ещё ! в правильной четырехугольной пирамиде mabcd с вершиной m стороны основания равны 4, а боковые
4,5(82 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ