Если отрезки пересекающихся медиан равны, то и медианы равны.
Если медианы треугольника равны, значит, треугольник равносторонний.
Применив теорему о том, что медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, найдем длину медиан:
ОА₁=√8, тогда АО=2√8, а АА₁=3√8.
АА₁=ВВ₁=СС₁=3√8=6√2.
В равностороннем треугольнике медиана является биссектрисой и высотой.
Найдем сторону АС через медиану ВВ₁ по формуле
ВВ₁=(АС√3)\2
6√2=(АС√3)\2
АС√3=12√2
АС=(12√2)\√3=4√6
Найдем площадь АВС
S=1\2 * AC * ВВ₁ = 1\2 * 4√6 * 6√2 = 2√6 * 6√2 = 12√12=24√3 (ед²)
Подробнее - на -
Объяснение:
Відповідь:
180 см²
Пояснення:
Дано: КМРТ - трапеція, АМ=РВ=3 см, АК=ВТ=12 см. Знайти S(КМРТ).
За властивістю дотичної до кола, відрізки дотичних проведені до кола з однієї точки, рівні.
Трапеція рівнобедрена за умовою, тому АМ=МС=СР=РВ=3 см;
АК=КН=НТ=ВТ=12 см.
Отже МР=3+3=6 см; КТ=12+12=24 см.
Проведемо висоти МУ та РХ, ХУ=МР=6 см, КУ=ТХ=(24-6):2=9 см.
Розглянемо ΔРТХ - прямокутний, РТ=3+12=15 см.
За теоремою Піфагора РХ=√(РТ²-ТХ²)=√(225-81)=√144=12 см.
S(СКМТ)=(6+24):2*12=15*12=180 см²