Образуется треугольник,в котором SE(возьми точку Е как точку на плоскости квадрата,до которой 6 см от точки S) сторона,и SA сторона. SE-перпендикуляр по условию задачи,значит у нас образуется прямоугольный треугольник ASE. Нам нужно найти сторону AE по теореме Пифагора: AE2=AS2-SE2 AE2=100-36=64 AE=8. Так как SA-перпендикуляр,а ABCD-квадрат,то точка S лежит в середине этого квадрата,равноудаленная от всех его 4-ех вершин. Значит AE это 1/2 стороны AB квадрата ABCD. AB=AEx2=16(см) Диагональ квадрата AD=AB√2 AD=16√2 (см) это и будет наша диагональ
Пусть высота проведенная из прямого угла А (треугольника АBC) будет обозначена АК. Тогда ВК является проекцией стороны АВ на гипотенузу ВС, а КС -проекцией АС на гипотенузу. Согласно формулам : АВ=√ВК*ВС и АС=√КС*ВС. Мы знаем соотношение катетов АВ и АС = 6:5, значит надо составить пропорцию АВ/АС=√ВК*ВС/√КС*ВС, ВС сокращается и получаем , что ВК/КС=(АВ/АС)^2=36/25 Зная ,что ВК больше КС на 11см, получаем ВК=КС+11, подставим в предыдущую формулу, получим (КС+11)/КС=36/25 25(КС+11)=36КС 25КС+275=36КС 11КС=275 КС=25см ВК=25+11=36см, значит гипотенуза ВС=ВК+КС=25+36=61см Отве: 61см
Проводишь вторую высоту
Получается прямоугольник и треугольник со сторонами 20 и (25-9) 16
По т.Пифагора считаешь 3 сторону (под корнем)20^2-16^2 получается 12
Площадь трапеции равна произведению полусуммы оснований на высоту.
1\2(9+30)*12 = 234