Вравнобедренном треугольнике abc с основанием ac проведена биссектриса ck. точка d лежит на продолжении стороны ac так, что точка a лежит между точками d и c. угол dab равен 110 градусам. найдите угол kca. ответ дайте в градусах. заранее
1) Бічна грань - прямокутник. ЇЇ розміри -dsin α*dcos α = d²sin2α/2. Площа бічної поверхні призми складає з 3 граней, тоді Sбок = (d²sin2α/2)*3 = 3d²sin2α/2. 2) Якщо кожне ребро дорівнює √2 см, то бічні грані - рівносторонні трикутники. Апофема дорівнює √2*cos 30 = √2*√3/2. Площа бічної поверхні становить 4*(1/2)*√2*√2*√3/2. = 2√3, Площа основи - (√2)² = 2. Тоді повна поверхня дорівнює 2√3 + 2 = 2(√3 + 1). 3) Якщо в основі піраміди прямокутний трикутник, а бічні ребра однакові, то вісь піраміди проходить через середину гіпотенузи основи. Ця вісь становить одночасно апофемою бічної грані. Тобто ця бічна грань вертикальна та її висота одночасно становить висотою піраміди. Висота піраміди дорівнює 12*cos 30 = 12*(√3/2) = 6√3.
Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°