В треугольнике ABC MN-средняя линия, M принадлежит AB, N принадлежит BC, О - точка пересечения медиан.
3) Три вершины ромба находятся в точках A, B и C. Определите координаты четвертой вершины.
4) Докажите, что точка K (2; -3) принадлежит медиане AN и делит её в отношении 1:2
Если на одной из двух прямых отложить несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Пусть дан отрезок ВС.
От конца В отрезка начертить луч и на нем от В отметить через равные промежутки 5 точек. Из пятой точки провести прямую через т.С отрезка ВС и провести параллельно ей прямые, пересекающие отрезок ВС. Этими прямыми ВС будет разделен на 5 равных частей. Любые две соседние части равны 2/5 исходного отрезка ВС.