Площадь осевого сечения цилиндра равна произведению диаметра его основания на высоту.
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
S осевого сечения=2r²=32 см²
пусть имеем треугольник abc, ch- высота и cm - медиана
угол мсн = 76 градусов по условию
в прямоугольном треугольнике сmn cумма острых углов смн, мсн равна 90 градусов, то есть угол смн = 90 – угол мсн = 90 – 76 = 14 градусов
треугольник амс равнобедренный, см равна половине гипотенузы , а ам равна половине гипотенузы, так как см - медиана. отсюда следствие, что угол саm равен углу асм по свойству углов при основании равнобедренного треугольника.
угол amc = 180-14=166 градуса
угол сam +угол mca=180-166=14
угол сam =угол mca=14/2=7 градусов
угол сba=90-7=83 градуса