Пусть этот параллелограмм АВСД. СМ и ДМ - биссектрисы. АМ||СД, СМ - секущая. Накрестлежащие углы при пересечении параллельных прямых секущей равны. Угол ВМС=углу МСД. Но так как СМ биссектриса и угол МСД=ВСМ, то все эти три угла равны. Из равенства углов при основании СМ треугольника МВС следует. что этот треугольник - равнобедренный. МВ=Вс=26. Точно также доказывается равенство сторон АМ и АД треугольника АМД. Следовательно, большая сторона АВ=СД=АМ+МВ=26+26=52. -------- Замечу, что биссектриса угла параллелограмма отсекает от него равнобедренный треугольник ( иногда сюда входят продолжения сторон). Это свойство биссектрисы пригодится при решении многих задач.
Пусть ВС и AD — диагонали параллелограмма AВDС (черт. 226). Докажем, что АО = OD и СО = ОВ. Для этого сравним какую-нибудь пару противоположно расположенных треугольников, например /\ AОВ и /\ СОD. В этих треугольниках АВ = СD, как противоположные стороны параллелограмма; / 1 = / 2, как углы внутренние накрест лежащие при параллельных АВ и СD и секущей AD; / 3 = / 4 по той же причине, так как АВ || СD и СВ — их секущая . Отсюда следует, что /\ AОВ = /\ СОD. А в равных треугольниках против равных углов лежат равные стороны. Следовательно, АО = OD и СО = ОВ.
СМ и ДМ - биссектрисы.
АМ||СД, СМ - секущая.
Накрестлежащие углы при пересечении параллельных прямых секущей равны. Угол ВМС=углу МСД.
Но так как СМ биссектриса и угол МСД=ВСМ, то все эти три угла равны. Из равенства углов при основании СМ треугольника МВС следует. что этот треугольник - равнобедренный. МВ=Вс=26.
Точно также доказывается равенство сторон АМ и АД треугольника АМД.
Следовательно, большая сторона АВ=СД=АМ+МВ=26+26=52.
--------
Замечу, что биссектриса угла параллелограмма отсекает от него равнобедренный треугольник ( иногда сюда входят продолжения сторон). Это свойство биссектрисы пригодится при решении многих задач.