Построим ромб, нормаль ОК, и отрезки КА, КВ, КС, КД.
Рассмотрим прямоугольный ΔКОД. В нем известен катет ОК=8см, катет ОД=ВД/2=3 см (по свойствам диагоналей ромба, точкой пересечения они делятся пополам). Найдем гипотенузу КД=√(64+9)=√73 см.
КД=КВ=√73 см.
Рассмотрим прямоугольный ΔАОД (диагонали ромба пересекаются под прямым углом). В нем известен катет ОД=3 см, гипотенуза АД=5 см. Найдем катет АО=√(25-9)=√16 =4см.
АО в свою очередь является катетом в прямоугольном ΔАОК, где известен второй катет КО=8 см. Найдем гипотенузу КА=√(64+16)=√80
4√5 см.
КА=КС=4√5 см.
ответ: расстояния от точки К до вершин ромба КД=КВ=√73 см, КА=КС=4√5 см.
Это ответ :)
На самом деле тут нужна теория.
1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1.
С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1.
Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O.
Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C.
Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1.
Само собой, плоскости AB1D1 и BDC1 параллельны.
2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1.
Тогда из параллельности плоскостей AB1D1 и BDC1
AO/OO1 = A1M1/M1C1 = 1;
CO1/OO1 = CM/MA = 1;
То есть все три отрезка A1O = OO1 = CO1.
Ясно, что OO1 - искомое расстояние между плоскостями (я напоминаю - A1C перпендикулярна обеим плоскостям).
Вот, теория закончилась. Дальше решение :)
A1C = 3, => OO1 = 1;