Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.
Стороны ромба содержатся в четырех прямых: АВ, ВС, СD и АD. Расстояние от М до ВС и СD равно МС=7 см, т.к. расстояние от точки до прямой - перпендикуляр, а по условию МС ⊥ плоскости ромба. Расстояние от М до прямой, содержащей сторону АD, равно наклонной МН, проведенной перпендикулярно к этой прямой. Длину ее найдем из прямоугольного треугольника МСН, в котором НС равна и параллельна высоте ромба. Угол СDН=углу А=45° СН=СD*sin (45°)=(8*√2):2=4√2 см МН=√(МС+СН)=√(32+49)=9 см Точно таким же будет расстояние до прямой, содержащей сторону АВ, т.к. все стороны ромба и соответственные углы при параллельных сторонах равны. ответ: 7 см до ВС и СD, и 9 см до АВ и АD
решение смотри на фотографии
Объяснение: