Начерти отрезок, его концы, допустим МК - задают тебе вершины двух известных углов, строить их надо с циркуля .Построй произвольный треугольник по заданным двум углам (третий угол, допустим Р- получится сам собой там, где пересекутся лучи двух заданных углов) . Этот треугольник подобен тому, который тебе нужен ( по 2 признаку подобия) Из третьего (получившегося угла Р) опусти с угольника высоту РН на первоначальный отрезок МК (т. е ты строишь подобную высоту) Твой треугольник подобен искомому. Теперь продли\укороти высоту РН до заданного размера-получится Рн, а через конец н проведи отрезок, параллельный МК, получится мк новой длины. Соедини точки Рмк. -готово.
В основе задания лежат свойства подобных треугольников. 1. Берем произвольный отрезок АВ и откладываем от него два данных угла . Соединяем лучи, исходящие из вершин А и В, точку пересечения обозначаем С,получается треугольник АВС , у которого два угла равны данным. 2 .Проводим вершину из угла С. Обозначим ее СЕ. 3.Далее на прямой СЕ отложим от точки Е отрезок, равный заданной высоте. Конец отрезка обозначим М. 4. Из точки М проведем прямые параллельно сторонам АС и ВС. Точки пересечения этих прямых с прямой АВ обозначим Р и Т. МРТ - искомый треугольник.
Объяснение:
Пусть Х это одна часть, тогда
6х это первая сторона
9х вторая сторона, так как в параллелограмма противоположные стороны равны, то получаем
Р=6х+9х+6х+9х=30х это равно 93
30х=93; Х=93:30; Х= 3,1см это одна часть
Первая сторона: 6*3,1=18,6 см
Вторая сторона: 9*3,1=27,9 см
Тогда две стороны по 18,6 см ( меньшая) и две стороны по 27,9 см(большая)