В каком ответе проведённая прямая, которая не находится в плоскости названной фигуры, перпендикулярна плоскости этой фигуры?
Прямая проведена перпендикулярно боковым сторонам трапеции
Прямая проведена перпендикулярно двум сторонам квадрата
Прямая проведена перпендикулярно катетам прямоугольного треугольника
Прямая проведена перпендикулярно основанию равнобедренного треугольника
Прямая проведена перпендикулярно двум радиусам, которые не образуют диаметр окружности
Приложим треугольник ABC (либо симметричный ему) к треугольнику A1B1C1 так, чтобы вершина А совместилась с вершиной A1, вершина В — с вершиной В1, а вершины С и С1, оказались по разные стороны от прямой А1В1. Рассмотрим 3 случая:
1) Луч С1С проходит внутри угла А1С1В1. Так как по условию теоремы стороны АС и A1C1, ВС и В1С1 равны, то треугольники A1C1C и В1С1С — равнобедренные. По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A1C1B1.
2) Луч С1С совпадает с одной из сторон этого угла. A лежит на CC1. AC=A1C1, BC=B1C1, C1BC – равнобедренный, ∠ACB=∠A1C1B1.
3) Луч C1C проходит вне угла А1С1В1. AC=A1C1, BC=B1C1, значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A1C1B1.
Итак, AC=A1C1, BC=B1C1, ∠C=∠C1. Следовательно, треугольники ABC и A1B1C1 равны по
первому признаку равенства треугольников.