1.Основными геометрическими фигурами на плоскости являются точка и прямая. 2.Положение точки на каждом из лучей задается ее координатой. Чтобы отличить друг от друга координаты на этих лучах, условились ставить перед координатами на одном луче знак « + », а перед координатами на другом луче знак « — ». 3.В месте раздела плоскостей прерывается область интегрирования по площади и неопределенный интеграл вырождается в определенный. Разбиение разрывает непрерывную корреляцию между функцией и аргументами кривой, проходящей по обеим плоскостям, если вторая производная - не ноль.
Сумма острых углов прямоугольного треугольника равна 90 градусов. Высота, опущенная на гипотенузу, делит АВС на два прямоугольных треугольника АСН и СНВ, где суммы острых углов также 90 градусов. Отсюда: САН=САВ=НСВ СВН=СВА=АСН Синус угла АСН можем найти из прямоугольного треугольника АСН, где известны катет СН=12√3 и гипотенуза АС=24. По т.Пифагора найдем противолежащий углу АСН катет АН АН²=24²-(12√3)²=576-432=144=12² АН=12 Синус АСН=АН/АС=12/24=0,5 Т.к. уг.АСН=уг.АВС, ответ таков: синус угла АВС=0,5
2.Положение точки на каждом из лучей задается ее координатой. Чтобы отличить друг от друга координаты на этих лучах, условились ставить перед координатами на одном луче знак « + », а перед координатами на другом луче знак « — ».
3.В месте раздела плоскостей прерывается область интегрирования по площади и неопределенный интеграл вырождается в определенный. Разбиение разрывает непрерывную корреляцию между функцией и аргументами кривой, проходящей по обеим плоскостям, если вторая производная - не ноль.