Теорема: если 2 стороны, и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. Док-во: так как угол А = углу А1, то треугольник АВС можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а сторны АВ АС наложатся соответственно на лучи А1В1 и А1С1. Поскольку АВ=А1В1, АС=А1С1, от сторона АВ совместится со стороной А1В1; в частности совместятся точки В и В1, С и С1. Следовательно совместятся стороны ВС и В1С1. ттреугольники АВс и А1В1С1 полностью вовместились, а значит, ТЕОРЕМА ДОКАЗАНА
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
Док-во:
так как угол А = углу А1, то треугольник АВС можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а сторны АВ АС наложатся соответственно на лучи А1В1 и А1С1. Поскольку АВ=А1В1, АС=А1С1, от сторона АВ совместится со стороной А1В1; в частности совместятся точки В и В1, С и С1. Следовательно совместятся стороны ВС и В1С1. ттреугольники АВс и А1В1С1 полностью вовместились, а значит, ТЕОРЕМА ДОКАЗАНА